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- NOMENCLATURE

V2G(x,y)  Laplacian of Gaussian filter

c Size of the LOG filter

E Preformance index minimized by the Hopfield network
Vij Output of neuron (ij).

Cjj Compatibility measure

w Weghts used in the compatibility measure

fl Distance compatibility factor

2 Environment compatibility factor

f3 Location compatibility factor

A Steepness parameter for the compatibility curve F(.)

0 Offset parameter for the compatibility curve F(.)

sim, nsim Similarity and non-similarity measures

2mn Y'mn  Elements of environment matrices

Oy Coordinates of object points on calibration plane 1

L Coordinates of image points of object points on plane 1
h() Calibration polynomial
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ABSTRACT

Three dimensional coordinates of an object are determined from it's two
dimensional images for a class of points on the object. Two dimensional images are first
filtered by a Laplacian of Gaussian (LOG) filter in order to detect a set of feature points
on the object. The feature points on the left and the right images are then matched using a
Hopfield type optimization network. The performance index of the Hopfield network
contains both local and global properties of the images. Parallel computing in stereo
matching can be achieved by the proposed methodology.

1. INTRODUCTION
Finding three dimensional coordinates of an object with respect to a given
coordinate system is an important task in motion control and manufacturing. The basic

' for correspondance



motivation of this paper is to introduce a Hopfield type neural network for the solution of
* matching problem in stereo imaging. A typical stereo image processing starts with the
acquisition of left and right images of an object. These images are processed to detect the
object boundaries or a class of interesting points. Due to disparity, a point on the object
projects itself to different locations in image planes. Since we have only the projected
image points, the construction of the object point requires that a point on the left image
should be matched to its corresponding image point on the right image. The contribution
of this paper is to use a Hopfield type neural network as an optimization tool to
accomplish the matching process.

The use of Hopfield neural network to parallelize the matching algorithm is earlier
proposed in [1], [2]. In [2] they determined a class of interesting points on which the
neural network based matching algorithm works. These interesting points are the ones
that have the largest variations of gray tones around them. The matching of interesting
points is accomplished by defining a quadratic optimization function which attains its
global minimum at matching points. Following Figure 1, it is assumed that:

a) the point (i) on the left image matches point (k) on the right image, and simultaneously,
b) the point (j) on the left image matches point (1) on the right image.
Under these conditions, a quadratic optimization function is defined as

E = f{(d; -d (D, —D)}+ (unigness conditions) (1.1)

where dj; denotes the distance between points i and j observed in images and Djk is the
difference in disparities between points i and k. The uniqueness conditions encourage the
matching of one pair of point (i,j) on the left image to only one pair of point (k,I) on the
right image. The Hopfield neural network is structured such that the quadratic
optimization function E serves as a Lyapunov function for the equations that represent the
neural network. Therefore, the Hopfield network is always stable and the steady state
output of the network corresponds to optimum match.

The optimization function proposed by [2] has the following limitations:

(1) Only local properties such as disparity and distance are considered. For example,
referring to Figure 1, the disparity (L"-L") and the distance (dj-dy) are considered.

(2) The matching must be performed for a pair of points, i.e., if point (i) matches point (k)
then simultaneously, point (j) should match point (1).

The basic idea in this paper is to improve the first condition by introducing a global
property into the performance index. This global property states that if the point (i) on the
left image is a match for the point (k) on the right image then lines passing through these
points and the focal points should intersect. If camera lenses do not have precise focal
points, as in the case of most real life cameras, then the distance between these lines
should be the smallest in comparison to other pair of lines. This concept is also illustrated
in Figure 1. '

The second limitation stated above stems from the need that the performance index
(1.1) must be quadratic if the Hopfield neural network is to be used. However, we will
show that the performance index can still be kept quadratic if we try to match only one
point on the left image to another single point on the right image. This procedure is much



more intuitive and there is essentially no need to consider the matching process for a pair
of points.

The paper is organized as follows. The feature based stereo vision is presented in
Section 2. The problem of matching left image points to right image points is solved in
Section 3. Determination of tree dimensional coordinates of the object points is given in
Section 4. The example in Section 5 illustrated the methodology. Finally, the conclusions
are stated in Section 6.

2. FEATURE BASED STEREO VISION

Feature based stereo imaging algorithms extract the feature primitives in each
image and match these primitives according to a pre-determined criterion. Choices of
primitives and matching criteria give rise to several feature based stereo algorithms.
Curve segments [8], straight lines [9], corners [7] and points surrounded by high gray
level variances [10] are some of the primitives used in the literature. In this study a class
of edge points are used as the feature primitives. These edge points are determined by
filtering both the left and the right images by the Laplacian of Gaussian (LOG) filter.

The LOG filter is a two dimensional operator given by,

rt-20° —r?
ViG(x,y =(———;——] exp (———]
) o 26’ 2.1)

where 7=VE Y ® and O is the size of the filter. The arguments x and y are the
horizontal and vertical locations where the LOG filter operates. The filter has a value of
zero at the edges and has a negative central region, as shown in Figure 2. The diameter
of the negative central region, Wop is directly proportional to ©, i.e, (6=W,p/22).

Since a digitized image consists of a finite number of pixels, (480 in y direction and
512 in x direction), the numerical implementation of the LOG filter can be performed only
on a finite number of (x,y) locations. To ensure that the filter response is almost zero at
the edges, a circular mask with dimension of (1.8W,p x 1.8W,p) is introduced. The filter
operates only within this iask and at the edges of the mask the magnitude of the filter is
~5%10-5. The LOG filter is also normalized such that the volume in the negative region
equals the volume in the positive region. The purpose of normalization is to make sure
that the output of the filter is zero when it is operating in a region where the gray level of
pixels are all identical.

The (LOG) filter is used to detect the location of sudden intensity changes (edge
points) on an image. The Laplacian part of the filter is a second order spatial derivative of
the image whereas the Gaussian part low pass filters the image before the second order
derivatives are evaluated [11]. Changing ¢ varies the amount of low pass filtering and
therefore, affects the sensitivity of edge point detection process.

As illustrated on a one dimensional edge in Figure 3, the second order derivative
of the gray level curve crosses zero around the edge. Therefore, the location of edge



points can be detected by examining the sign changes in the LOG convolved images. The
sign changes can be categorized according to the direction in which they are detected, i.e.,
from negative to positive or visa versa. This direction information can be used as an
additional property of the edge point.

The zero crossings that are not originated from a real edge are considered as noise
induced zero crossings. It is desired to eliminate these noise induced zero crossings
without any loss of valuable information. One practical solution to this problem is to use
LOG filters with a wide bandwith i.e,, large ©. However, very large sized LOG filters may
also cause elimination of real zero crossings. Another disadvantage of using a large filter
s the shift of the location of zero crossing with respect to the location of actual edge.

This results in a distortion of the determined shape of an object as illustrated in [3].

* We use a class of edge points as the feature points for our stereo matching
algorithm. Consideration of only a certain class of edge points stems from the fact that the
use of all edge points leads to an excessively large neural network. The class of edge
points is defined in Section 3.

3. MATCHING
Feature points are matched with a Hopfield type neural network. This network
minimizes the following quadratic performance index.

N, N, LY N, N, N, .
E==-AY Y CY2+Y (-2 V) +2, (-2 V) @.1
i= j=t J=1 i=1

i=1 j=1

The performance index is designed to attain its minimum value if a feature point (i) on the
left image matches a feature point (j) on the right image. The first term contains (Cj)
(-1£C; £+1) as a compatibility measure between a feature point (i) on the left image

and a feature point (j) on the right image. If the points are compatible (C;;) approaches 1
otherwise, to -1. The compatibility measure is defined explicitly later in this section. The
term (V;; ) denotes the output of neuron (ij). The neurons are assumed to have saturation
type non-linear functions such that the output of a neuron is either zero or one. (N;) and
(N, ) are the number of feature points on the left and right images respectively and (A) is a
user specified positive constant. The negative contribution of the first term will be at the
maximum level if the output of the neuron (V) is the largest (+1) and the compatibility
(Cy) is also the largest +1).

The second and third terms in the index are introduced to enforce the uniqueness
constraint in matching i.e., a point (i) on the left image can only match one point (j) on the
right image. Therefore, if the neuron outputs are collected in a matrix
{Vyi=1,2,.. N, j=1,2,... N, } then, for uniqueness, there should be only one element with
(+1) value on a given row and column. Note that the second and the third term penalize
rows and columns if they contain more than one element with (+1) value but they cannot
impose the uniqueness condition exactly.

The compatibility of a feature point (i) on the left image to feature point (j) on the
right image is defined by
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Where
- (f1;) is the compatibility factor in terms of the minimum distance between the lines

of sight of the feature points (i) and (j).
- (f2;) is the compatibility factor in terms of the environment around the feature
points (i) and (j).
- (f3;) is the compatibility in terms of the vertical location of the feature points on
their corresponding image planes.
- W1, W2, and W3 are the user specified weights that measure the contribution of
each term. For convenience, W1+W2+W3=1.

We will now describe how each contributing factor in (3.2) is determined.

A - Minimum Distance Compatibility Factor (f1;)
The distance between the lines of sight is a global property of matching in a sense
that for an ideal match this distance should be zero as illustrated in Figure 1.

The (f1;) is determined by:

f1, = F(dist,) T (3.3)

where (dist;) is the minimum distance between the lines of sight of feature point (i) on the
left image and the feature point (j) on the right image. The function F(x) is a sigmoid
function, assigned as below,

— 2 —
F(x)_(————He_(e_m 1) (3.4)

where A a positive constant which effects the steepness of the curve as shown in

Figure 4. The positive parameter 9 shifts the curve to the right by 8. In orderto
normalize (f1;) between -1 and +1 at the maximum and minimum values of its argument,
we determine A and @ by solving the following equations simultaneously

2

F(rnin(diSf‘} )) = 1+ e—(O,—min(a'uI&_)X,) - 1 = 099
. 2
F(max(dist;)) = 14 g Cr oL -1=-0.99 (3.5)

The vanable (min(distij)) denotes the minimum value at the (row (i)) of {dist;;}i=1.ny j=1..N;
matrix and 8. and A, are the values of § and A for the row (i). The matrix {dist;;} contains
the calculated distances between the sight vector of point (i) and the sight vector of point
(3). The values of (min(dist;;)) and (max(distij)) depend on the experimental conditions
as illustrated in Section 5.



B - Environment Compatibility Factor (2 )

The second factor in the compatibility measure, i.e. (f2;), quantifies the
dissimilarity of environments around the potential matching points (i) and (j). It is
calculated by

f2;=F(ns;) (3.6)

where the function F(x) has the same form as in (3.4), (ns;;) is a measure of dissimilarity
between the environments surrounding point (i) of the left image and the point (j) of the
right image. The dissimilarity (ns;;) is determined by the following procedure.

Step 1. The digitized left and right images are convolved with a suitable LOG
filter. '

Step 2. In each filtered image, every row is examined from left to right for zero
crossings. If a zero crossing is detected with a sign change from positive to negative then
the pixel at this zero crossing is assigned to category 1. If the zero crossing is from
negative to positive then this pixel is assigned to category 2.

Similarly, every column in each filtered image is examined from top to bottom for
zero crossings. If they are not detected previously, the positive to negative zero crossings
are assigned to category 3 and negative to positive zero crossings to category 4. The basic
motivation here is to use the category numbers to describe the character of zero crossings.
The category numbers effectively characterize the slopes around the zero crossings.

In order to reduce the number of points to match, only a class of zero crossing
points are considered for matching. This class consists of zero crossing points on five
horizontal lines in the image. Scanning from the top of the image, the first line is chosen
as the line that contains at least one zero crossing point of category one. The last line is
the line that also contains at least one zero crossing of category one. The other three lines
divide the distance between the first and the last line into four equal segments. The zero
crossing points with category 1 are considered as feature points to be matched. Note that
the proposed reduction in the number of zero crossing points is not necessary but only’
convenient in order to reduce the work load of the neural network. A similar reduction is
also performed in [2].

Step 3. For each feature point on the left image, an environment matrix Eje R**!° is
constructed. This matrix is centrally located on the feature point and contains the category
numbers for zero crossings around and including this feature point. Similarly, for each
feature point on the right image, an environment matrix E;e R**'* is defined. Let (a'yp )
denote any element in environment matrix of feature point (i) and (b'y,p, ) denote any
element in environment matrix of feature point (j).

Step 4. In order to quantify the environment around feature points, a similarity
measure (sim;;) is defined between the feature point (i) on the left image and the feature
point (j) on the right image. For every non-zero element in the environment matrix of
point (i) the same address in the environment matrix of point (j) is checked. The following
procedure describes how the similarity is quantified.



sim;(old)=0
s:ntij(nav)—szm,.j(old)+4 if @, =b), m=13 n=1.15
sim,(new) = sim;(old)+2 if al, =bl,,., m=1L3 n=1.15 3.7

Step 5. Finally, the dissimilarity measure between the environments is calculated as
ns; =4*n—simy, (3.8)

where n is the number of non-zero elements in the environment matrix of point (i).
With (3.6) and (3.8), (f2;) can now be determined as

2
f2U' =F(ns,.j)=—1—+—ew— (39)

where the parameters of the sigmoid function 8; and A are picked such that at least one
value of (f2;; ) is one for each (i) and (ns;;; j=1,2,... N; ).

C - Vertical Location Compatibility Factor (f3;)

This measure is introduced to check if the matching points are on the same height
in image planes. If the cameras are positioned on the same plane and they are identical
then the matching points must be at the same height in their respectlve image planes.
Therefore,

3;=1 if feature points i and j are at the same height
3;="-1 if feature points are not at the same height (3.10)

4. DETERMINATION OF 3-D COORDINATES

The point where the lines of sight of the matching feature points intersect is the
location of the object point in space. However, if the cameras are not ideal pin-hole
cameras, as in the case of.yeal world cameras, then it is impossible to construct the line of
sight because there is no well defined focal point. This problem is solved by using the 2-
plane calibration technique [4]. This methodology can be described within the following
steps:

(1). A plane with a set of object points is mounted vertically within the working
space of the camera. The location of the object points are measured with respect to a
fixed coordinate frame and recorded as O, € R’. Correspondmg locations on the camera

image plane coordinate frame are measured and recorded as /, € R*.

(i1). Using the least squares algorithm, a polynomial fit is obtained between O, and

[" as

Oy =h (1) (3.11)



. (iii). Following the previous steps, a second plane is mounted vertically in a
different location within the working space and a similar least squares fit is obtained as

Oy =h (1) (3.12)

(iv). For any given feature point /;, the equations (3.11 ) and (3.12 ) are used to
determine two points in space as O1; and 02;. The line passing through O1, and 02, is
used as the line of sight. This procedure is further illustrated in Figure 5.

(v). For every feature point on the left and right image planes, a line of sight is
determined. If the lines of sight intersect then the intersection point is assumed as the
object point in space. If the line of sights do not intersect, the mid-point between the lines
where they pass closest to each other is taken as the corresponding object point location.

5. EXAMPLE

The left and right images of a test object are given in Figures 6 and 7. The
imaging system has a resolution of 8 bits/gray tone. The effect of the LOG filter on the
original images are shown in Figures 8 and 9. The black dots are the location of zero
crossing points that are obtained by an LOG filter operating with o=7. A user defined
threshold band is used to eliminate the noise induced zero-crossings. If the average of the
L.OG values immediately before and after the zero crossing does not exceed a user
specified threshold value then this zero crossing is assumed to be caused by noise and is
not considered. The threshold level used is 7. All zero crossings are categorized
following the procedure outlined in Step 2 of Section 2. Each horizontal line is examined
first. If a zero crossing is detected with a sign change from positive to negative, its
category is noted as 1. If a sign change is from negative to positive then its category is 2.
Similarly, all columns are checked from top to bottom. If a zero crossing point is not
categorized in the horizontal scanning, then a sign change from positive to negative makes
this point of category 3, otherwise 4. The feature points are then determined by selecting
the zero crossing points of category 1 on five selected lines. They are also shown with
their label numbers in Figures 8 and 9. ,

Tables 1 and 2 give the image plane coordinates of the labeled feature points.
Table 3 lists the minimum distances between the lines of sight of feature points. The
information in the table is a global information in matching because if the distance is zero
then (i) and (j) are exact matching points. Table 4 shows the non-similarity measures
which indicate how similar the environment around the feature points.

Table 5 lists the 6 and A parameters of the compatibility factors (f1;;) and (f2;; ). Note
that these parameters are optimized for each feature point as shown in (3.5) and (3.9).
Finally, Table 6 contains the compatibility factors (C;) obtained by (3.2). The weights
used in evaluating the compatibility factors are W1=0.5, W1=0.35 and W1=0.15.

The task of the Hopfield neural network is to determine the matching image points
based on the compatibility values (C;; ). The neural network is shown in Figure 10. The
steady state solution of the network with (1) initial conditions are given in Table 7. The
numeric entry (1) indicates that the feature points (i) and (j) are the matching points. The
(0) entry signifies no match between the feature points.



Once the matching feature points are determined, the locations of the object points
are calculated by the lines of sight. The calculated three dimensional coordinates of the
object points and the measured coordinates agree with each other as shown in Table 8.
The entries marked by (?) in the table indicate that only two feature points are falsely
matched by the network.

Error Analysis:

Analyzing the error in the same order as the process, the first potential source of
error is due to image acquisition. The imaging board used can only sample a finite number
of image points (256X256) with a finite resolution (6 bits/gray level). As a result of this
limitation, a 2 plane camera calibration equations (3.11) and (3. 12) are effected by two
different errors; one is due to the discretized location of the image point and two is due to
the finite number of terms used in the polynomial fit. A maximum error of 4 mm. occurred
in the camera calibration in our experiments. In other words, the exact location of the
object point is miscalculated by at most 4 mm. through calibration equations.

The LOG filter blurs the image therefore, causes the calculated edge points (zero
crossings) to shift with respect to the actual edge points observed on the image. The
direction and the amount of this shift are nonlinear functions of the environment and the
bandwidth of the filter ¢. It is difficult to quantify this shift but it can be minimized by
choosing 6 as small as possible. Furthermore, the amount of shift is expected to be the
same for matching points since both images are convolved with the same size LOG filter.

The outcome of the Hopfield type optimizing neural network depends on the
weight parameter (A) of the energy equation (3.1). Too small a value for (A) puts
unnecessarily more emphasis on the constraint terms therefore may create mismatches. On
the other hand, too large a value for (A) may create more than one match for a given
feature point. For the example presented, A=15 gives good matching results.

6. CONCLUSIONS

This paper proposes a Hopfield type neural network in order to solve the matching
problem in stereo imaging. The network offers a parallel computing architecture and
minimizes a performance index that penalizes the mismatch. The methodology starts with
the left and right hand images of a given object. The images are first filtered by a Laplacian
of Gaussian (LOG) filter in order to detect a set of feature points. The feature points on
the left and the right images are then matched using a Hopfield type optimization network.
The performance index of the Hopfield network contains both local and global properties
of the feature points and discourages multiple matches for a given feature point. The
technique is demonstrated on a real object and sources of errors are discussed.
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Figure 1. Stereo imaging Procedure ,
The point (i) on the left image matches point (k) on the right image, and simultaneously,
the point (j) on the left image matches point (1) on the right image
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Figure 2. The shape of the LOG filter.
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S A — o) a1 4

LABE X1 Y1 Z1
1 277 1 99 1
2 320§ 99 1
3 3271 99 1
4 342 |1 99 1
5 278 | 173 1
6 327 4 173 1
7 370 | 173 1
8 | 278 | 247 1
9 | 327§ 247 1
10 | 343 | 247 1
11 | 370 | 247 1

Table 1. Left image feature points and image plane coordinates.

LABEL] X2 Y2 22
1 84 | 110 1
2 117 | 110 1
3 124 | 110 1
4 138 | 110 1
3 84 | 189 1
6 124 | 189 1
7 165 | 189 1
8 85 | 268 1
9 124 | 268 1
10 | 139 | 268 1
11 | 165 | 268 1

Table 2. Right image feature points and image plane coordinates.

1

2

3

4

5

6

7

8

10

11

0.01

14.15

14.18

14.26

3.10

3.90

5.16

5.51

6.42

6.83

7.59

14.09

0.00

0.01

14.06

2.54

3.08

3.86

4.78

5.49

5.81

6.43

14.10

0.02

0.00

0.04

247

2.98

3.71

4.69

5.36

5.67

6.26

14.12

0.04

0.03

0.00

2.34

16.79

3.42

449

5.11

3.39

5.93

3.17

3.68

3.82

4.13

0.01

14.06

14.10

3.14

3.85

421

5.02

2.64

2.95

3.03

3.21

1401

0.02

14.04

2.59

3.03

3.25

3.69

2.31

2.33

2.58

2.70

14.00

14.02

0.04

2.28

2.60

2.75

3.04

5.65

6.36

6.50

6.90

3.12

3.85

5.08

0.01

14.05

14.10

14.24

4.80

5.32

5.4

5.71

2.52

2.97

3.66

14.08

0.05

0.02

14.04

4.58

5.04

5.15

5.39

2.37

2.76

3.35

14.10

0.08

0.06

14.00

Ll Ll

4.24

4.63

4.72

4.92

2.15

2.46

2.91

14.14

14.12

14.11

0.07

Table 3. Minimum distance between the lines of sight.
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Wil 1] 213 41516171819 ]1l]1l
1 431 | 512 | 439 | 567 | 403 | 647 | 485 | 506 | 554 | 374 357
2 559 | 210 | 601 | 655 | 568 | 765 | 640 | 529 | 739 | 481 533
3 276 | 614 | 158 | 541 | 276 | 367 | 208 | 569 | 417 | 410 | 232
4 566 | 693 | 451 | 334 | 508 | 427 | 381 | 686 | 369 | 531 | 580
5 181 | 518 | 249 | 537 ] 101 | 372 | 210 | 449 | 400 | 337 | 217
6 399 | 751 | 367 | 442 | 406 | 14 | 186 | 744 | 157 | 583 394
7 421 | 613 | 372 | 572 | 408 | 572 | 409 | 592 | 519 | 448 | 440
8 96 | 473 | 164 | 494 | 96 | 287 | 125 | 444 | 357 | 294 | 132
9 so1 | 701 | 377 | 367 | 448 | 182 | 281 | 689 | 116 | 515 | 499
10 | 476 | 484 | 458 | 621 | 423 | 647 | 495 | 486 | 585 | 283 435
11 | 151 | 505 | 239 | 525 | 171 | 287 | 200 | 489 | 362 | 350 121
Table 4. Non-similarity measures.
i=1 | i=2 | =3 | i=4 | i= i=6 | i= i= i=9 | i=10 ] i=11
Forflijj| &, 1.005|1.000]1.000} 1.000}1.005]1.010| 1.020| 1.005| 1.010| 1.030| 1.035
)‘.' 5319 |5.293 [5.293 [5.293 [5.319 [5.346 [5.401 [5.319 |5.346 |5.457 |5.485
For 2ij} &, 360 | 213 | 161 | 337 | 104 | 17 | 375 | 99 | 119 | 291 | 124
},‘, 3 3 3 3 3 3 3 3 3
Table 5. Optimized parameters for the compatibility factors.
ifj 1 2 3 4 5 6 7 8 9 10 i1
1 10.29({-0.70/-0.70}-0.70| -1 -1 -1 -1 -1 -1 1-0.30
2 [-0.70]0.99]0.28 | 070} -1 -1 -1 -1 -1 -1 -1
3 1-0.70}0.281 099028 -1 -1 -1 -1 -1 -1 -1
4 1-070]0.2810281099( -1 -1 -1 -1 -1 -1 -1
5 -1 -1 -1 -1 1099070070} -1 -1 -1 -1
6 -1 -1 -1 -1 1-0.70{ 099 1-0.70| -1 -1 -1.] -1
7 -1 -1 |-030! -1 |0.70{-0.70{0.29 | -l -1 -1 -1
8 ]-0.30} -1 -1 |'-1 |-050] -1 -1 10.29}-0.70]-0.70]-0.70
9 -1 -1 -1 -1 -1 -1 -1 1-07010.99]0.291-0.70
10 -1 -1 -1 -1 -1 -1 -1 j-0.70]0.29] 0.99 { -0.70
11 -1 -1 -1 -1 -1 -1 -1 [0.70]-0.70{-0.70| 0.99

Table 6. Overall compatibility values (Cij).
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Table 7. The steady state solution of the neural network.

CALCULATED REAL
COORDINATES | COORDINATES
+ 0.5

PAR| X [ Y[ z | x| Y]z
1,1 [ 873]9.35]49.54] 87 | 9.25| 49
2,2 | 658 9.13 [46.61] 66 | 9.25| 46
33 1637898 44.74] 6.25]9.25| 46
4,4 | 547]9.12[46.34] 550 | 9.25| 46
5.5 | 8.69 ] 6.03 [49.07] 8.70 | 6.00 | 49
6.6 | 6.23 | 5.98 |46.43] 6.20 | 6.00 | 46
7,7 | 4.07] 5.99 [45.91] 4.00 | 6.00 | 45.7
88 | 868|274 49.22] 870275 | 49
99 16.24]285(46.26]6.20]2.75| 46
9,10 5872725084 2 | 72 | ?
109 581 297 4216 7 | 7 | ?
10,10] 5.44 | 2.86 [46.00] 5.40 [ 2.75| 46
11,11] 408 | 2.88 [45.75] 4.00 [ 275 | 45.7

Table 8. Calculated and measured 3-D coordinates of the object-points

K
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